Improvement of RF Operation at KURRI FFAG

Tom Uesugi
Kyoto University Research Reactor Institute (KURRI)

2014. 09. 23, New York

PURPOSE OF THIS TALK

is to clarify how the rf is operated and and what is the possible improvement in the future.

CONTENTS

- 1. How to make rf pattern
 - constant amplitude, constant acc phase
 - AM function is experimentally determined
- 2. Variable k-index
- 3. Future improvement (briefly)

HOW TO DETERMINE THE PATTERN

$$V(t) = V_0(t)\sin\Psi(t)$$

Requirements for V(t) and $\Psi(t)$

- 1. V(t) < Vmax , by the power of amplifier
- 2. $\phi_s \simeq const.$, or changes very slowly
- 3. bucket area is wide (high V, low $\overline{\phi}$ s) Acceleration is fast (high V, high ϕ s)

Our choice

- 1. Constant, highest Vo (=4kV)
- 2. Constant ϕ s, (no flatbase, no flattop!)

 The value is experimentally determined, such that the accelerated beam intensity takes maximum.

cf. ACCELERATION TIME, BUCKET AREA

RF PATTERN EDIT

- 1. Assume constant amplitude and accelerating phase.
- 2. Derive rf pattern ψ (t)=...
- 3. Apply rf pattern to the amplifier
- 4. Measure the gap voltage amplitude, which is affected by cavity impedance
- 5. AM correction on low level rf.

PATTERN 1

This assumption was CONSTANT K \longrightarrow not true (later) CONSTANT V0 and ϕ s

until Jan. 16, 2014

RF WAVEFORM

RF waveform is analytically expressed in function of time, if energy gain per turn is constant $V\sin\phi_s = \Delta E$

Scaling rule
$$\frac{B}{B_0} = \left(\frac{r}{r_0}\right)^k \longrightarrow \frac{r}{r_0} = \left(\frac{p}{p_0}\right)^{\alpha}, \quad \alpha = \frac{1}{k+1}$$

$$\longrightarrow \frac{f}{f_0} = \left(\frac{p}{p_0}\right)^{1-\alpha} \frac{E_0}{E}$$

Thus

$$\frac{dE}{dt} = fV_0 \sin \phi_s = f_0 \Delta E \left(\frac{p}{p_0}\right)^{1-\alpha} \frac{E_0}{E}$$

$$p(t) = p_0 \left[(1+\alpha) \frac{E_0 \Delta E}{p_0^2} f_0 \cdot t + 1 \right]^{\frac{1}{1+\alpha}} \qquad \Psi(t) = 2\pi \frac{E(t) - E_0}{\Delta E}$$

$$\Psi(t) = 2\pi \frac{E(t) - E_0}{\Delta E}$$

where reference parameters, po, fo, are evaluated at t=0

PROGRAMMED WAVEFORM

$$V(t) = \frac{1}{C_{AM}(t)} \text{sin}\left(\sqrt{A_1 + A_2(t + A_3)^B} - A_4\right) \qquad T_{acc} = \frac{1}{C}\left[\left(\frac{p_f}{p_i}\right)^B - 1\right]$$

$$T_{\mathtt{acc}} = rac{1}{\mathtt{C}} \left[\left(rac{\mathtt{p_f}}{\mathtt{p_i}}
ight)^{\mathtt{B}} - 1
ight]$$

$$\mathtt{A_1} = \left(rac{2\pi\mathtt{m}}{\mathtt{\Delta}\mathtt{E}}
ight)^2$$

$$\mathtt{A_3} = \mathtt{1/C} - \delta\mathtt{t}$$

$$\Delta E = V_0 {
m sin} \phi_{
m s}$$

$$\mathtt{A}_2 = \left(rac{2\pi \mathtt{p}_0}{\Delta\mathtt{E}}
ight)^2 \mathtt{C}^\mathtt{B}$$

$$egin{align} \mathtt{A}_1 &= \left(rac{2\pi\mathtt{m}}{\Delta\mathtt{E}}
ight)^2 & \mathtt{A}_3 &= 1/\mathtt{C} - \delta\mathtt{t} \ & \mathtt{A}_2 &= \left(rac{2\pi\mathtt{p}_0}{\Delta\mathtt{E}}
ight)^2\mathtt{c}^\mathtt{B} & \mathtt{B} &= rac{2}{1+lpha} &= rac{2\mathtt{k}+2}{\mathtt{k}+2} \ & \mathtt{B} &= rac{2}{1+lpha} &= rac{2\mathtt{k}+2}{\mathtt{k}+2} \ & \mathtt{B} &= \mathbb{A} &= \mathbb{A}$$

$$C = (1 + \alpha) \frac{f_0 E_0 \Delta E}{p_0^2}$$

 E_0 Injection energy

Revolution frequency at E_0

k Field index

 ΔE Energy gain per turn

 C_{AM} Amplitude modulation

 δt Time offset (energy redundancy) m+11 MeV

-> next slide

-> next slide

 $4kV \times \sin \phi s$

-> later

~0.5ms, later

REFERENCE PARAMETERS

May 2008

A set of measured (E,f) determined reference f0
 f = 1591.84 kHz for Ek = 11.57MeV
 measured with injected beam from the booster FFAG.
 k-index was assumed to be 7.5 (designed value)

Jul 2008

2. Another set of measured (E,f) modified k-value r = 5039.5 mm (straight section) for f = 3841.7 kHz (assumed 100 MeV) ---> k = 7.645

AMPLITUDE CORRECTION

How the amplitude function CAM was determined

TIME OFFSET

The rf pattern starts below the injection energy, to have energy-redundancy.

Everyday before operating, RF trigger delay, relative to the ion-source, is optimized with monitoring captured intensity.

ACCELERATED BEAM INTENSITY

Fast loss at very beginning of the acceleration.

PATTERN 2

SIMULATED VARIABLE K CONSTANT Vo and ϕ s

since Jan. 16, 2014

SIMULATED K

According to simulation based on TOSCA field-map, k-index is not constant.

PROGRAMED WAVEFORM

$$V(t) = rac{1}{C_{AM}} sin \left(2\pi \sum_{7}^{k=1} a_k (t - \delta t)^k
ight)$$

RESULTS

constant k

variable k

BEST ϕ s IS 20deg?

BEST

(After optimizing injection angle etc.) Fast beam loss disappeared and beam intensity became twice!

FREQUENCY DIFFERENCE

Pattern 1 (constant k) on simulated k

Variation of ϕ s is only 1 deg?

WHY PATTERN2 IMPROVED?

FURTHER IMPROVEMENT

ADDITIONAL RF CAVITY

will be installed on Jan. 2015.

With this cavity, the rf voltage is becomes twice? and thus

- (1) fast acceleration for
 - (1A) higher repetition, and/or
 - (1B) larger turn separation at inj.
- (2) wide (stable) bucket area
- (3) Suppress harmonic field components excited by rf cavity.

MODIFICATION OF V OR ϕ s

RF amplitude and/or synchronous phase is not necessarily constant, but can be changed with energy. for example,

- (1) Higher V and lower ϕ s only in the injection energy region, where the beam is affected the energy loss at the charge stripping foil
- (2) V decreased along with the beam energy, to keep bucket area? (V proportional to 1/sqrt(E))

SUMMARY

In the KURRI FFAG, the rf is operated very simply in constant V and ϕ s. No flat base nor flat top is made. By considering the variable k-index, which is obtained by TOSCA-based simulation, the beam intensity has been increased by more than twice.

Future improvement will be done by

- (1) Install additional cavity
- (2) Introducing more sophisticated pattern